Remise à niveau Maths (2) : Dérivation, Etude de fonctions, Intégration - Équations différentielles - Complexes

Code UE : MVA912

  • Cours
  • 0 crédits

Responsable national

Thierry HORSIN

Public et conditions d'accès

Niveau fin de secondaire. S'adresse à tous ceux qui ont déjà acquis les notions de bases de l'analyse ou qui ont suivi l'UE MVA911 et qui souhaitent approfondir leurs connaissances, pour aborder un enseignement supérieur.

Objectifs pédagogiques

Etudier le sens de variation d'une fonction et la représenter. Voir les premières notions de primitives et d'intégrales, leur lien avec le calcul des surfaces, les propriétés des logarithmes, des exponentielles, des complexes et leurs applications à la résolution d'équations différentielles.

Compétences visées

Savoir représenter une formule par une courbe représentative ou inversement vérifier qu'une formule est susceptible de correspondre à une représentation graphique donnée. Savoir calculer des intégrales simples, résoudre des équations différentielles courantes, manipuler facilement les nombres complexes, les logarithmes et les exponentielles

Contenu

- Dérivée. Interprétation géométrique de la dérivée.
- Création et utilisation d'un formulaire pour le calcul des dérivées.
- Application de la dérivée à la variation des fonctions.
- Courbes représentatives.
- Notion de primitive liée au calcul des aires planes.
- Utilisation de primitives. Notion d'intégrale.
- Logarithmes et exponentielle.
- Résolution de l'équation différentielle y ' - a y = 0.
- Résolution de l'équation différentielle y ' ' + omega^2 y = 0.
- Introduction aux nombres complexes. Plan complexe. Forme trigonométrique.    Définition de l'exponentielle complexe. Formules d'Euler.
- Application à la résolution d'équations différentielles du second ordre sans second membre.

Modalité d'évaluation

contrôle continu + 1 session de rattrapage

Contact

EPN06 Mathématiques et statistiques
2 rue conté Accès 35 3 ème étage porte 19
75003 Paris
Sabine Glodkowski
Voir les sites

Voir les dates et horaires, les lieux d'enseignement et les modes d'inscription sur les sites internet des centres régionaux qui proposent cette formation

UE

    • Centre
      • Centre
        Comment est organisée cette formation à distance ?

        Planning

        Date limite d'inscription : 01/04/2018
        Date de démarrage : 12/02/2018
        Date de la première session d'examen :19/06/2018
        Date de la deuxième session d'examen :04/09/2018

        Accompagnement collectif

        Rendez-vous :
        Chat : oui
        Forum par UE :oui
        Webconférence : oui

        Accompagnement individuel

        Echange par mails : oui
        Accompagnement téléphonique :

        Regroupement

        Séances de regroupement : non

        Modalités de validation

        Examen sur table :oui
        Projet : non
        Contrôle continu : non
        Examen partiel : non
        :
    • Paris
      • Paris
        • 2017-2018 2nd semestre : Présentiel
        • 2018-2019 2nd semestre : Présentiel
        • 2019-2020 2nd semestre : Présentiel